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A Score-Statistic Approach for the Mapping of Quantitative-Trait Loci with
Sibships of Arbitrary Size
K. Wang1 and J. Huang1,2

1Division of Statistical Genetics, Department of Biostatistics, and 2Department of Statistics and Actuarial Science, University of Iowa, Iowa
City

The Haseman-Elston method is widely used for the mapping of quantitative-trait loci. However, this method does
not use all the information in the data, because it only considers the sib-pair trait-value difference. In addition, the
Haseman-Elston method was developed for independent sib pairs; its generalization to nonindependent sib pairs
is not straightforward. Here we introduce a score test statistic derived from a normal likelihood based on multiplex
sibship data, conditional on identical-by-descent sharing statuses. This score test is asymptotically equivalent to
the corresponding likelihood-ratio test, but it is much easier to implement. Because the proposed test uses all of
the trait values, it makes more efficient use of the data than does the Haseman-Elston method. The proposed test
is naturally applicable to sibships of arbitrary size. The finite-sample properties of the proposed score statistic are
evaluated via simulations.

Introduction

The Haseman-Elston method (H-E method; Haseman
and Elston 1972) has been widely used for the mapping
of quantitative-trait loci. This method was originally de-
veloped for independent sib pairs. It regresses the
squared difference in the trait values of the sib pairs on
their estimated proportion of marker alleles that are
shared identical by descent (IBD). If the slope of the
regression line is significantly less than 0, then there is
evidence for linkage between the marker and a trait
locus.

However, the squared trait-value difference does not
summarize all of the information in the trait data, since
the trait data for a sib pair is bivariate in nature (Wright
1997). Recently, regression methods that use other
transformations of the trait values as dependent vari-
ables have been proposed, to make more efficient use
of the trait information (Elston et al. 2000; Xu et al.
2000; Forrest 2001; Sham and Purcell 2001; Wang et
al. 2001). Similar to the H-E method, these recent mod-
ifications were also developed for independent sib-pair
data. The use of these methods for dependent sib pairs
that arise from multiplex sibships is not straightfor-
ward. Generalization of the H-E method to arbitrary
sibship size has attracted much interest in the literature.
For instance, one way of dealing with a sibship con-
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taining more than two sibs is to treat the distinct sib
pairs in the sibship as independent and apply the H-E
method (Amos et al. 1989; Collins and Morton 1995).
To take into account the dependence among the distinct
sib pairs from the same sibship, it has been suggested
either to adjust the degrees of freedom of the t test
statistic (Wilson and Elston 1993) or to use the gen-
eralized linear regression technique (Elston et al. 2000).

To make efficient use of the information contained in
the trait data, the maximum-likelihood method has also
been used for the mapping of quantitative-trait loci
(Kruglyak and Lander 1995; Fulker and Cherny 1996;
Wright 1997). Because this approach does not require
preliminary data reduction, as the H-E method does, it
is more powerful when the normality assumption is sat-
isfied. Another advantage of the maximum-likelihood
method is that it handles sibships of arbitrary size in a
systematic manner. However, implementing the maxi-
mum likelihood method involves intensive computation
in maximizing the likelihood function. Actually, for
large sibships, even the computation of the likelihood
function could be very computation intensive, because
calculating the likelihood function requires the joint
probabilities of the IBD-sharing statuses among all of
the sibs. This is a daunting requirement when one con-
siders that the calculation of the IBD-sharing probability
even for sib pairs is not trivial (see reports by Kruglyak
and Lander [1995], Almasy and Blangero [1998], and
Tiwari and Elston [1997], for algorithms for calculating
the IBD-sharing probability for sib pairs.)

Therefore, it is desirable to have a test statistic that
has the optimal property of the maximum-likelihood
method yet is easy to compute. In the present study, we
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derive a score statistic based on the likelihood function
of nuclear families with arbitrary sibship size. This score
statistic is asymptotically equivalent to the likelihood-
ratio test statistic that corresponds to the maximum-
likelihood method. The limiting distribution of this
score statistic is derived. This score statistic is easy to
compute and directly applies to sibships of arbitrary
size. A simulation study is conducted to investigate the
type I error rate and the power of this score statistic,
which are also compared with those of H-E method.

Methods

Consider n nuclear families with sibship size ni in the
ith family. At any location on the genome, each sib pair
can share 0, 1, or 2 alleles IBD. Let pikl be the number
of marker alleles shared IBD by the kth sib and the lth
sib in the ith family. pikl is a random variable with pos-
sible values of 0, 1, or 2. The probability that ,p p 0ikl

1, or 2 between sib pairs can be estimated from the
marker data (Fulker et al. 1995; Kruglyak and Lander
1995).

For a sibship of size ni, there are distinctn (n � 1)/2i i

sib pairs. Since each sib pair could share 0, 1, or 2
marker alleles IBD, the total number of IBD-sharing
configurations for all of these sib pairs is . Wen (n �1)/2i i3
denote this number by Ji. Let gij be the probability of
the jth configuration for the ith family. This probability
can be 0 for some configurations; for instance, in a
sibship of size 3, any configuration in which the first
sib shares 2 alleles IBD with both the second sib and
the third sib, and the second sib and the third sib share
1 allele IBD, has zero probability.

In the same sibship, the IBD-sharing status for one
sib pair is independent of that for another sib pair, even
when these two sib pairs have one sib in common (Amos
et al. 1989). However, the IBD-sharing statuses among
all the sib pairs are not jointly independent. This means
that gij is not the product of the probabilities of the sib-
pair IBD-sharing statuses involved in the jth IBD-shar-
ing configuration. Generally, the following relationship
holds:

P(p p m) p g , m p 0,1,2 ,�ikl ij
j�Tm

where Tm is the set of IBD-sharing configurations in
which the kth sib and the lth sib share m alleles IBD.

Let be a vector consisting of the traitty p (y , … ,y )i i1 ini

values of the sibs in the ith family. We assume that,

given the jth IBD-sharing configuration, the density
function of yi is , wheref(0,S )ij

1 1 t �1f(0,S ) p exp � y S yij i ij i{ }n /2 1/2i(2p) FS F 2ij

is a multivariate normal density function, and S pij

, with if and if , where(j ) j p 1 k p l j p r k ( lkl kl kl m

rm is the correlation coefficient between the kth sib and
the lth sib, given that they share m alleles IBD, where

. To see an example of the matrix , considerm p 0,1,2 Sij

a sibship of size 3. In this sibship, the matrix thatSij

corresponds to a configuration in which sibs 1 and 2
share 1 allele IBD, sibs 1 and 3 share 1 allele IBD, and
sibs 2 and 3 share 2 alleles IBD, is

1 r r1 1⎛ ⎞
S p r 1 r .ij 1 2⎜ ⎟

r r 1⎝ ⎠1 2

We note that we have assumed that the yi vectors have
been standardized such that each component of yi has
a mean of 0 and a variance of 1. For a discussion about
the ways of standardizing yi vectors, see the Data Stan-
dardization section.

Let mi denote the marker data in the ith family. Since
there are Ji IBD-sharing configuration patterns among
the ni sibs in the ith family, the probability of (yi,mi) is

Ji

P(y ,m ) p f(0,S )g P(m ) .�[ ]i i ij ij i
jp1

The unknown parameters in the above equation are r0,
r1, and r2. The log likelihood for n families is, up to an
additive constant,

n Ji

l(r ,r ,r ) p ln f(0,S )g . (1)� �[ ]0 1 2 ij ij
ip1 jp1

For the conditional correlation coefficient of the trait
values between members of a sib pair, ri, , thei p 0,1,2
following order restriction is generally true (Wright
1997): . When there is no linkage,0 ! r � r � r � 10 1 2

the correlation coefficient does not depend on the
marker allele–sharing status—that is, 0 ! r p r p0 1

.r � 12

In the present study, we put the following restriction
on r0, r1, and r2:

r p r � fd , 0 � f � 1 ,1 0

where and f is a prespecified known value.d p r � r2 0

That is, is a convex combination of and . Ther r r1 0 2

situation without such an assumption will be considered
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in a separate article. For a model without gene-envi-
ronment interaction, we have (from Kempthorne [1957]
and Tang and Siegmund [2001]):

21 jA
r � r p1 0 2j 2Y

and

21 jA 2r � r p � j ,2 1 D2 ( )j 2Y

where and are the variances of the additive and2 2j jA D

dominance effects of the trait, respectively, and is the2jY

variance of the trait. It can be seen that (whichf p 0.5
is equivalent to ) represents an additive effect ofj p 0D

the trait gene. It can also be seen that r � r � r �2 1 1

, since , suggesting if the dominancer j � 0 f ! 0.50 D

variance is present.
When there is no linkage, ; otherwise, .d p 0 d 1 0

Under this parameterization, the unknown parameters
in the log-likelihood function in equation (1) becomes

instead of . The log-likelihood function(r ,d) (r ,r ,r )0 0 1 2

in equation (1) now becomes

n Ji

l(r ,d) p ln f(0,S )g . (2)� �[ ]0 ij ij
ip1 jp1

The hypotheses of interest are

H :0 ! r ! 1, d p 0 and0 0

H :0 ! r ! 1, d 1 0 . (3)a 0

Define . is a mea-˜ ˜p p fP(p p 1) � P(p p 2) pikl ikl ikl ikl

sure of the average IBD-sharing extent between the kth
sib and the lth sib. When , it is the proportionf p 0.5
of alleles shared IBD by the kth sib and the lth sib
(Haseman and Elston 1972). The distribution of isp̃ikl

the same for each pair in each family, regardless of the
sibship size. Under the null hypothesis, is indepen-p̃ikl

dent of yi. We denote the mean and variance of byp̃ikl

and , respectively.˜ ˜E(p) Var (p)
Under the null hypothesis H0, andd p 0 r p r p0 1

. The matrices , are all the same, withr S , j p 1,2, … ,J2 ij i

all off-diagonal elements equal to r0. Let this matrix be
denoted by . For simplicity, we introduce a vector,Si0

. Under the null hypothesis,t �1w p (w , … ,w ) { S yi i1 in i0 ii

, since . We note that�1w ∼ N(0,S ) y ∼ N(0,S )i i0 i i0

1
�1 t �1 tS p [(1 � r )I � r 11 ] p [I � r11 ] ,i0 0 0 i1 � r0

where andr p r /[1 � (n � 1)r ] w p (y �i 0 i 0 ik ik

, where is the average of all the elements¯ ¯n ry )/(1 � r ) yi i i 0 i

of yi.
In what follows, we present a score statistic for testing

the hypotheses in equation (3). The first-order deriva-
tives and the information matrix that are necessary for
this purpose are presented in Appendix A.

To better describe the score statistic, we define

˜ ˜b p [p � E(p)][w w � E(w w )].�i ikl ik il ik il
1k l

That is, bi is the inner product of the vector ˜{p �ikl

and the vector , two vectors˜E(p)} {w w � E(w w )}ik il ik il

each of length . Under the null hypothesis,0.5n (n � 1)i i

the mean and variance of bi are, respectively, E(b ) pi

and , since˜0 Var (b ) p 0.5n (n � 1) Var (p) Var (w w )i i i ik il

values are independent of when there is nop̃ wikl i

linkage.
It is shown in Appendix B that, to test the null hy-

pothesis against the alternative hypothesis inH H0 a

equation (3), one can use the following score statistic:

n 2(S b )ip1 i nif S b 1 0ip1 inS Var (b )ip1 iS p .n {0 otherwise

In Appendix B, it is derived that Sn is asymptotically
distributed as under the null hypothesis2 20.5x � 0.5x0 1

in equation (3).
We note that the mean and variance of˜ ˜E(p) Var (p)

are the same for any sib pair in any family. It canp̃ikl

be derived from the study by Amos et al. (1989) that
and˜E(p) p 0.25(2f � 1)

22 2˜Var (p) p 0.25(f � 0.5) 1 � p( )� i

2
2 4 2�0.125 1 � p � p � p ,[ � � (� ) ]i i i

where pi is the frequency of the ith marker allele. How-
ever, the mean and variance of wikwil depend on the
sibship size ni through ri:

riE(w w ) p � ,ik il 1 � r0

2 2(1 � r) � ri iVar (w w ) p .ik il 2(1 � r )0

These expressions for , and˜ ˜E(p), Var (p), E(w w )ik il

can be used in the calculation of the scoreVar (w w )ik il

statistic Sn; however, we do not endorse such a practice.
Instead, we recommend using the sample counterparts
of these quantities in the calculation of Sn. The main
reason is that doing this tends to make the score sta-
tistic Sn more robust in situations in which the nor-
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mality assumption for the trait values is violated and/
or the marker locus is in linkage disequilibrium with
the trait locus. In the latter case, it is inappropriate to
use the population marker-allele frequencies to cal-
culate .˜Var (p)

To be specific, we recommend replacing and˜E(p)
with the sample mean and the sample variance˜Var (p)

of for all sib pairs from all families, respectively,{p }ikl

and replacing and with the sampleE(w w ) Var (w w )ik il ik il

mean and the sample variance of for all sib pairs{w w }ik il

from all the families that are of the same size, respec-
tively. This is how the score statistic Sn is calculated in
our simulation.

When transforming yi into wi, we need to know the
correlation coefficient, r0, between the trait values of
sib pairs. Since the true value of r0 is unknown, we
suggest replacing it with the sample correlation coeffi-
cient between independent sib pairs. By standard as-
ymptotic theory, since this sample correlation is a con-
sistent estimator of r0, such substitution does not change
the asymptotic distribution of Sn.

Data Standardization

In deriving the score statistic Sn, we have assumed that
the trait values for a sibship, yi, have a multivariate nor-
mal distribution, conditional on the IBD-sharing config-
uration within the sibship. The conditional marginal
mean and variance for each component of yi—say,
yik—are 0 and 1, respectively. This implies that the un-
conditional marginal mean and variance of yik are also
0 and 1, respectively.

When the mean of yik is not 0 and the variance of yik

is not 1, we can standardize yi in the following way:
Consider the trait values of all sibs in all families,

. Let and be the sam-ˆˆ{y , k p 1, … ,n , i p 1, … ,n} m jik i

ple mean and sample standard deviation, respectively,
of these trait values. We standardize yik by

ˆy � mikx p .ik
ĵ

Since and are consistent estimators of their respectiveˆm̂ j

population counterparts, xik has a mean of 0 and a
variance of 1, asymptotically. Consequently, the score
statistic Sn based on still has the limiting distribu-{x }ik

tion , on the basis of the standard as-2 20.5x � 0.5x0 1

ymptotic theory.
So far, we have critically assumed that yi has a mul-

tivariate normal distribution conditional on the IBD-
sharing configuration in the sibship. When this nor-
mality assumption is not satisfied, the proposed score
statistic Sn may have poor performance. This is also a
concern for the H-E method (Allison et al. 1999).

To reduce the impact of nonnormality on the per-

formance of the proposed score statistic, we recommend
transforming the trait values first, on the basis of the
empirical normal quantile–distribution transformation.
The description of this transformation is as follows:
Consider the trait values of all sibs in all families,

. Let rik be the rank of the{y ,k p 1, … ,n ,i p 1, … ,n}ik i

yik. The transformation of yik is

rik⎛ ⎞�1x p F ,nik ⎜ ⎟1 � � ni⎝ ⎠ip1

where F�1 is the inverse of the cumulative function of
the standard normal distribution. xik is basically the em-
pirical normal quantile distribution transformation of
yik, since is basically the empirical dis-nr /(1 �� n )ip1ik i

tribution of all the trait values. We use in-n1 �� nip1 i

stead of here, because we want to make sure thatn� nip1 i

. From standard asymptotic theory, xik followsx ! �ik

the standard normal distribution, with a mean of 0 and
a variance of 1.

We then assume that the joint distribution of x pi

is a multivariate normal distributiont(x ,x , … ,x )i1 i2 ini

conditional on the IBD-sharing configuration: for the
kth sib and the lth sib, the correlation coefficients be-
tween xik and xil are r0, r1, or r2 if they share 0, 1, or
2 alleles IBD, respectively, at the marker locus. This
modeling procedure is often referred to as the “multi-
variate (empirical) normal copula” model. For more
discussions about bivariate copula models, see (for ex-
ample) reports by Genest and MacKay (1986) and
Klaassen and Wellner (1997).

It can be shown that such transformation does not
change the asymptotic distribution of the likelihood-
ratio statistic for the log-likelihood in equation (2) (au-
thors’ unpublished data). Since the asymptotic distri-
bution of the score statistic Sn is the same as that of the
likelihood-ratio statistic, it follows that such transfor-
mation will not change the asymptotic distribution of
Sn either.

Special Cases

In the previous section, we derived a score statistic for
sibships of arbitrary size. This statistic is related to some
other statistics in the literature and has a simple inter-
pretation when the sibship size is constant across all
families.
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Independent Sib Pairs

For sib-pair data in which , wen p 2, i p 1,2, … ,ni

have

1 r0 tw p I � 11 yi i( )1 � r 1 � r0 0

1 y � r yi1 0 i2p .2 ( )y � r y1 � r i2 0 i10

Furthermore,

1
˜ ˜b p [p � E(p)]{(y � r y )i i i1 0 i22 2(1 � r )0

(y � r y ) � E[(y � r y )(y � r y )]}i2 0 i1 i1 0 i2 i2 0 i1

and

1
˜Var (b ) p Var (p) Var [(yi i12 4(1 � r )0

�r y )(y � r y )] ,0 i2 i2 0 i1

where .p̃ p fP(p p 1) � P(p p 2)i i12 i12

Since

1
(y � r y )(y � r y )i1 0 i2 i2 0 i12 2(1 � r )0

2 21 (y � y ) (y � y )i1 i2 i1 i2p � ,2 2[ ]4 (1 � r ) (1 � r )0 0

it can be seen that, when , is proportionalnf p 0.5 � bip1 i

to the estimated slope in the “new combined HE re-
gression” (HE-COM; Sham and Purcell 2001). In this
regression, the dependent variable is

2 2(y � y ) (y � y )i1 i2 i1 i2� ,2 2(1 � r ) (1 � r )0 0

which is a weighted sum of the squared sums and the
squared differences, and the independent variable is .p̃i

Therefore, for independent sib-pair data, the proposed
score statistic Sn is equivalent to the t test for testing the
regression effect in such a regression. The rejection re-
gion of such a test is one sided. Sham and Purcell (2001)
compared the performance of the H-E method with some
other common statistics; HE-COM outperforms the
other statistics in all of the situations investigated.

Constant Sibship Size 12

When the sibship size is constant across all families,
the proposed statistic Sn takes a simpler form and is
related to the usual F-test statistic for testing whether
the regression coefficient is 0 in a regression analysis.

Let s be the common sibship size. We have

n

˜Var (b ) p N Var (p) Var (w w ) ,� i ik il
ip1

where is the total number of sib pairsN p 0.5ns(s � 1)
in all n families. Now and are theE(w w ) Var (w w )ik il ik il

same across all families. The nonzero part of Sn becomes

n n2 2

˜ ˜� b � � [p � E(p)][w w � E(w w )]( ) { }i ikl ik il ik il
1ip1 ip1 k l

p .n ˜N Var (p) Var (w w )ik il� Var (b )i
ip1

(4)

On the other hand, if we regress {wikwil} against {pikl},
the usual F statistic for testing whether the regression
slope is 0 is equivalent to the quantity on the right hand
side in equation (4).

Simulations

In the simulations, we assume that there are three sibs
in each family. The trait is assumed to be determined by
two equally frequent alleles, D and d, and the marker-
allele frequencies are also assumed to be equal. The trait
values, , of the three sibs in a family are sim-(y ,y ,y )1 2 3

ulated on the basis of the following model:

y p g � u � e , j p 1,2,3 ,j j j

where u represents the effect of shared genes other than
the one at the locus under consideration or common
environmental factors; e1, e2, and e3 are error terms that
are independent of each other; and g1, g2, and g3 are the
genetic contributions of the linked trait locus, with

m if the genotype is dddd

g p m if the genotype is Dd .j Dd{m if the genotype is DDDD

The value of mdd, mDd, and mDD are determined from the
broad-sense heritability, h, which, following Gillespie
(1998), is defined as

2jg
h p .2 2 2j � j � jg u e

In the above expression, , , and are the variances2 2 2j j jg u e
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Table 1

Type I Error Rates Based on 10,000 Replications

MODEL, SAMPLE

SIZE, AND

SCORE STATISTIC

NOMINAL SIGNIFICANCE LEVEL

.1 .05 .01 .001

1:
100:

H-E .0993 .0523 .0120 .0013
∗Sn .0996 .0491 .0106 .0014
∗∗Sn .1020 .0484 .0106 .0011

200:
H-E .1004 .0521 .0113 .0011

∗Sn .0999 .0512 .0124 .0018
∗∗Sn .0992 .0514 .0133 .0018

2:
100:

H-E .1026 .0520 .0109 .0014
∗Sn .1043 .0551 .0122 .0013
∗∗Sn .1055 .0547 .0122 .0009

200:
H-E .1025 .0510 .0115 .0010

∗Sn .1047 .0531 .0132 .0018
∗∗Sn .1061 .0550 .0115 .0013

3:
100:

H-E .1063 .0526 .0112 .0010
∗Sn .1023 .0514 .0112 .0012
∗∗Sn .1002 .0519 .0109 .0012

200:
H-E .0988 .0500 .0095 .0013

∗Sn .1015 .0524 .0112 .0018
∗∗Sn .1013 .0531 .0109 .0018

4:
100:

H-E .1049 .0534 .0110 .0011
∗Sn .1049 .0566 .0142 .0014
∗∗Sn .1065 .0555 .0127 .0018

200:
H-E .1003 .0505 .0114 .0011

∗Sn .1011 .0531 .0126 .0012
∗∗Sn .0972 .0497 .0114 .0020

due to the quantitative-trait locus, shared gene or en-
vironmental effect u, and error e, respectively.

Specifically, we consider the following four trait mod-
els in the simulation:

Model 1: , , and�m p 3h/(1 � h) m p 0 m pdd Dd DD

. and are independently dis-�m e edd i1 i2

tributed as .N(0,1)
Model 2: , , and�m p 3h/(1 � h) m p 0 m pdd Dd DD

. and are independently dis-�m e edd i1 i2

tributed as .2�0.5x1

Model 3: , , and�m p 6h/[9(1 � h)] m p 0.5mdd Dd dd

. and are independentlym p �m e eDD dd i1 i2

distributed as .N(0,1)
Model 4: , , and�m p 6h/[9(1 � h)] m p 0.5mdd Dd dd

. and are independentlym p �m e eDD dd i1 i2

distributed as .2�0.5x1

In all four models, is generated from .u N(0,0.5)i

Models 1 and 2 assume that the mean phenotypes
are determined additively by the alleles at the disease
locus. Models 3 and 4 introduce some dominance. We
note that the error distributions in models 1 and 3 are
symmetrical, whereas the error distributions in models
2 and 4 are skewed to the right. Under these four mod-
els, the type I error and power of the proposed score
statistic and the original H-E statistic (Haseman and
Elston 1972) are compared. When calculating the score
statistic, we use two methods to standardize the trait
values. First, we use the sample mean and sample stan-
dard deviation in the way described in the Data Stan-
dardization section. The corresponding score statistic is
denoted by . We also standardize the trait values with∗Sn

the empirical normal quantile distribution transfor-
mation, which is also described in that section; the cor-
responding score statistic is denoted by . In calcu-∗∗Sn

lating the H-E statistic, we treat the three dependent sib
pairs formed from the three sibs in the same family as
independent sib pairs. Such practice is valid when num-
ber of sib pairs is large, as in the situation of our sim-
ulation (Blackwelder and Elston 1985; Wilson and Els-
ton 1993). In all of these analyses, we use an additive
model, by setting .f p 0.5

The IBD-sharing probabilities at the marker locus are
calculated from table II of Haseman and Elston (1972),
since it is faster and more convenient than using some
existing genetics programs. The simulation program
was written in R language (Ihaka and Gentleman 1996).
It was run in R (version 1.3.0) on a Compaq XP 1000
workstation running Red Hat Linux 7.1.

In the simulation study of the type I error rate, we
set the recombination fraction (v) between the quanti-
tative-trait locus and the marker at and set thev p 0.5
heritability at . Table 1 reports the observed typeh p 0
I error rates of these three statistics when the nominal

significance level is at .1, .05, .01, and .001 and when
the number of family members is 100 and 200. For these
three statistics, the observed type I error rates are very
close to the respective nominal significance levels.

To study the power of the four statistics, we fix v

between the trait locus and the marker at 0. Figures 1
and 2 depict the power of the four statistics when the
(broad-sense) heritability h is allowed to change from
0.05 to 0.5 with step size 0.05 for sample sizes 100 and
200. In the four models considered, the score statistics
( and ) perform no worse than does the H-E sta-∗ ∗∗S Sn n

tistic. The difference in their performance is negligible
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Figure 1 Power at different levels of heritability at the nominal significance level of .001, for 1,000 replicates, with 100 families included
in each.

when the heritability is small ( for andh ! 0.2 n p 100
for in models 1 and 3; forh ! 0.1 n p 200 h ! 0.1

in models 2 and 4). However, for other heri-n p 100
tability values, both score statistics perform better than
the H-E statistic. The increase in the performance of the
two score statistics is more apparent in models 2 and
4, where the error terms are skewed.

We compare the two data-standardization tech-
niques, by comparing the performance of and .∗ ∗∗S Sn n

For the models where the error terms are normally dis-
tributed (i.e., models 1 and 3), the powers of these two
score statistics are very close to each other (the powers
of these statistics in model 1 are virtually the same).
However, for models in which the error terms are
skewed (i.e., models 2 and 4), the power of is less∗Sn

than the power when the error terms are normally dis-
tributed (compare model 3 vs. model 1, and model 4
vs. model 2). However, the power of almost remains∗∗Sn

the same (again, compare model 3 vs. model 1, and
model 4 vs. model 2). The empirical normal quantile
distribution transformation seems to be more robust to
nonnormality of the error terms.

Discussion

In the present study, we proposed a score statistic for
detecting linkage to quantitative-trait loci. This score
statistic inherits the benefit of the likelihood-ratio sta-
tistic, in that it makes efficient use of the information
from all sibs in sibships of arbitrary size, yet it is much

easier to compute. The ease of computation results from
two facts: First, as an intrinsic property, the score sta-
tistic does not involve maximization of the likelihood
function. Because of the explicit formula for the score
statistic, its calculation is straightforward. Second, al-
though the calculation of the likelihood function re-
quires the joint probabilities of the IBD-sharing statuses
among all sibs in a sibship, it turns out that it suffices
to know the pairwise IBD-sharing probabilities in order
to calculate the score statistic. Since several genetics pro-
grams exist that can export pairwise IBD-sharing prob-
abilities between sib pairs, the calculation of the pro-
posed score statistic can be implemented very easily. This
second advantage of the score statistic over the likeli-
hood-ratio statistic is important here, because it makes
the calculation of the score statistic immediately feasible
in that it does not require the joint sharing probabilities
among all sibs in a sibship. Tang and Siegmund (2001)
considered a score statistic in a similar context, but it
was assumed that the markers were completely infor-
mative, in which case the IBD-sharing configuration
among a sibship would be known with certainty.

In comparison with the H-E method and its recent
modifications, a salient feature of the proposed score
statistic is that it handles multiplex sibships in a natural
way. Without breaking the sibship into sib pairs, the
proposed score statistic is calculated directly from the
sibship. For independent sib pairs, this score statistic
turns out to be asymptotically equivalent to the HE-
COM statistic of Sham and Purcell (2001).
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Figure 2 Power at different levels of heritability at the nominal significance level of .001, for 1,000 replicates, with 200 families included
in each.

In our simulation study, we considered one additive
model and one dominant model. For each model, we
considered the cases where the error terms are sym-
metrical (normally distributed) and skewed (x2 distrib-
uted). Under these simulation models, the proposed
score statistic outperforms the H-E method, in terms of
power, when the heritability changes from 0.05 to 0.5.
The type I error rates of the score statistic and the H-
E method are both well under control.

For nonnormal data, we recommend a data-trans-
formation procedure that is based on the standard nor-
mal density function and the empirical distribution of
the trait values. As pointed out by an anonymous re-
viewer, such a data-transformation procedure can be
done prior to any other quantitative-trait loci mapping
method, and this does not guarantee multivariate nor-
mality. The latter point is the reason that we used the
normal copula model; we assume that the transformed
data have a multivariate normal distribution. As the
same reviewer pointed out, such a practice could com-
plicate the interpretation of some interesting quantities
such as additive variance and heritability; however, as
far as the test is concerned, we have shown that, for
the model used in our study, such a transformation does
not change the asymptotic distribution of the score sta-
tistic we derived (authors’ unpublished data).

Compared with our likelihood function (2), the var-
iance-component analysis uses a different but related
likelihood function. In likelihood function (2), the like-
lihood for the ith family is a mixture of Ji normal den-

sities. A corresponding variance-component likelihood
function would be

f(0,S ) , (5)j

where is a symmetric matrix whose diagonal elementsSi

are 1 and whose klth off-diagonal element is

r P(p p 0) � r P(p p 1) � r P(p p 2)0 ikl 1 ikl 2 ikl

p r � (r � r )[fP(p p 1) � P(p p 2)] .0 2 0 ikl ikl

We prefer likelihood function (2) to likelihood function
(5), because the former contains more information; one
can write out likelihood function (5) from likelihood
function (2), but not vice versa. If the normality as-
sumption holds, the analysis based on the former should
have as much power as that based on the latter. In a
simulation study, the likelihood-ratio statistic from like-
lihood function (2) performs better than that from like-
lihood function (5) (Dolan et al. 1999). We expect our
score statistic to be more robust against violation of the
normality assumption, in terms of type I error rate; the
asymptotic distribution of a score statistic relies solely
on the central limit theorem, although the derivation of
the score statistic depends on the model assumption. In
contrast, the asymptotic distribution of the likelihood-
ratio statistic is directly related to the model assump-
tion. Further studies are needed to assess the power
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behavior of our approach and of the variance-compo-
nent method for non-normal data.

We note that likelihood function (2) is based on the
joint distribution of marker and trait. Thus, this like-
lihood is only correct for randomly selected families and
is approximately correct for moderately selected sibship
data. This likelihood cannot be simply applied to ex-
tremely discordant sib-pair data. However, analysis of
extremely discordant sib-pair data can be considered to
be a missing-data problem—that is, the pairs not se-
lected for genotyping can be viewed as having their
marker data missing. For instance, one approach for
applying our method to extremely discordant sib-pair
data is to include all the untyped pairs and assign the
prior IBD-sharing probabilities to these pairs (Kruglyak
and Lander 1995; Eaves et al. 1996; Dolan et al. 1999).
Other approaches for analyzing extremely discordant
sib-pair data include the method based on IBD-sharing
scores or weighted IBD-sharing scores (Risch and Zhang
1995; Gu et al. 1996) or the method based on the con-
ditional likelihood of marker data, given trait values

(Dudoit and Speed 1999; Sham et al. 2000; Goldstein
et al. 2001).

In the present study, we considered only the sib-sib
relationship; however, the score statistic can also be ap-
plied directly in situations where there is only one re-
lationship involved, no matter what that relationship
is. When there is more than one relationship, the situ-
ation becomes more complicated. The score statistic
that can handle multiple relationships together will be
presented in a separate article.
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Appendix A

Derivatives and Information Matrix

Let be a symmetrical matrix whose diagonal elements are all 0 and whose klth off-diagonal element is . It˜Q pi ikl

is apparent that .t˜E(Q ) p E(p)(11 � I)i

When evaluated at , the derivative of with respect to is(r ,d) p (r ,0) l(r ,d) r0 0 0 0

n Jidl(r ,d) 1 d0 p f(0,S )g� � ij ijdr f(0,S ) drip1 jp10 i0 0

n 1 dFS Fi0t �1 t �1p 0.5 y S (11 � I)S y �� i i0 i0 i[ ]FS F drip1 i0 0

n n (n � 1)ri i 0t tp 0.5 w (11 � I)w �� i i{ }(1 � r )[1 � (n � 1)r ]ip1 0 i 0

n

t t t tp 0.5 {w (11 � I)w � E[w (11 � I)w ]}� i i i i
ip1

n

p [w w � E(w w )] .�� ik il ik il
1ip1 k l
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Similarly, the derivative of with respect to d, when evaluated at , isl(r ,d) (r ,d) p (r ,0)0 0 0

n J Ji idS dFSdl(r ,d) ij 1 ijF0 t �1 �1p 0.5 y S g S y � g� � �[ ]i i0 ij i0 i ij( )dd dd FS F ddip1 jp1 jp1i0

n 2r0t ˜p 0.5 w Q w � p� �i i i ikl{ }(1 � r )[1 � (n � 1)r ] 1ip1 k l0 i 0

n

t tp 0.5 [w Q w � E(w Q wFQ )]� i i i i i i i
ip1

n

˜p [w w � E(w w )]p .�� ik il ik il ikl
1ip1 k l

In deriving these first-order derivatives, we used the following facts:

1. ,
�1dS dS�1 �1 �1 t �1i0 i0p �S S p �S (11 � I)Si0 i0 i0 i0dr dr0 0

2. ,dSJ iji� g p Qij ijp1 dd

3. ,n �1iFS F p (1 � r ) [1 � (n � 1)r ]i0 0 i 0

4. . (The proof of this fact is omitted, because of its length.)dFS F n �2J ij ii ˜� g p �2r (1 � r ) � p1k lij 0 0 ikljp1 dd

The expectations of and the conditional expectation of are taken under the null hypothesis,t t tw (11 � I)w w Q wi i i i i

and are

n (n � 1)ri i it t t �1E[w (11 � I)w ] p tr[(11 � I)S ] p �i i i0 1 � r0

and

r 2ri it �1 t ˜E(w Q wFQ ) p tr(Q S ) p � 1 Q 1 p � p .�i i i i i i0 i ikl1 � r 1 � r 1k l0 0

The information matrix is

I I11 12I { ,0 ( )I I12 22

where

t t t �1 t �1I p 0.25E{Var [w (11 � I)w ]} p 0.5E{tr[(11 � I)S (11 � I)S ]}11 i i i0 i0

1 2 2p E 0.5n (n � 1){[1 � (n � 1)r ] � (n � 1)r } ,( )i i i i i i2(1 � r )0

t t t t �1 �1I p 0.25E{Cov [w (11 � I)w ,w Q wFQ ]} p 0.5E{tr[(11 � I)S Q S ]}12 i i i i i i i0 i i0

1 ′ 2 2p E(p )E 0.5n (n � 1){[1 � (n � 1)r ] � (n � 1)r }( )i i i i i i2(1 � r )0

˜p E(p)I ,11
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and

t �1 �1I p 0.25E[Var (w Q wFQ )] p 0.5E[tr(Q S Q S )]22 i i i i i i0 i i0

˜Var (p) 2 2 2˜p E{0.5n (n � 1)[(1 � r) � r ]} � E(p) Ii i i i 112(1 � r )0

2˜ ˜p Var (p)E[0.5n (n � 1) Var (w w )] � E(p) I .i i ik il 11

In the final expressions for I11, I12, and I22, the expectation is taken with respect to the sibship size ni.

Appendix B

Derivation of the Score Statistic Sn

From asymptotic theory, under the null hypothesis,

�l(r ,d)0⎛ ⎞�1/2n v⎛ ⎞1
d�r0 r v , where v p ∼ N(0,I ) .0⎜ ⎟�l(r ,d)0�1/2⎜ ⎟n v⎝ ⎠2�d⎝ ⎠

Let and be the sets of parameters that correspond to the null hypothesisV p {(r ,d):d p 0} V p {(r ,d):d 1 0}0 0 1 0

and the alternative hypothesis, respectively. Let and� p {h p (h ,h ):h � R,h p 0} � p {h p (h ,h ):h �0 1 2 1 2 1 1 2 1

. From theorem 16.7 of van der Vaart (1998), the likelihood ratio statistic isR,h 1 0}2

L p 2[sup l (v) � sup l (v)]n n n
v�V v�V1 0

p 2[sup l (v) � l (v )] � 2[sup l (v) � l (v )]n n 0 n n 0
v�V v�V1 0

d t t t tr sup [2v h � h I h] � sup [2v h � h I h]0 0
h�� h��1 0

t �1 t �12 2p inf (A ) v � Ah � inf (A ) v � Ah , (B1)k k k k
h�� h��0 1

where

I I1 11 12
A p ( )2� �I 0 I I � I11 11 22 12

Notice that and , where I is a 2#2 identity matrix.t t �1AA p I (A ) v ∼ N(0,I)0

The parameter space is the upper-half space. Since if and only if , and since if and� Ah � � h � � Ah � �1 0 0 1

only if , is also the upper-half space. Sinceh � � {Ah:h � � }1 1

2(I v � I v )11 122 1t �1 2inf (A ) v � Ah p ,k k 2I (I I � I )h�� 11 11 22 120

2(I v � I v )11 122 1 if I v � I v ! 011 122 12
t �1 I (I I � I )2 11 11 22 12inf (A ) v � Ah p .k k {h��1 0 otherwise
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Therefore, from equation (B1),

2(I v � I v )11 122 1 if I v � I v � 011 122 12d I (I I � I )11 11 22 12L r .n {0 otherwise

whose distribution is .2 20.5x � 0.5x0 1

Since

˜I Var (p)112 2 2 ˜I I � I p E{0.5n (n � 1)[(1 � r) � r ]} p I Var (p)E[0.5n (n � 1) Var (w w )] ,11 22 12 i i i i 11 i i ik il2(1 � r )0

a consistent estimator of is2I I � I11 22 12

n n

�1 �1˜I Var (p)n [0.5n (n � 1) Var (w w )] p I n Var (b ) .� �11 i i ik il 11 i
ip1 ip1

A sample version of isI v � I v11 122 1

dl(v) dl(v)
�1/2 �1/2˜I [n � E(p)n ]11 dd dr0

n

�1/2 ˜ ˜p I n [p � E(p)][w w � E(w w )]��11 ikl ik il ik il
1ip1 k l

n

�1/2p I n b .�11 i
ip1

Therefore, a sample version of is , which is the score statistic Sn
2 2 n 2 n(I v � I v ) /[I (I I � I )] (S b ) /S Var (b )11 12 11 11 22 12 ip1 i ip1 i2 1

reported in the text.
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